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Abstract 

Turbocharging has become the favored approach for downsizing 

internal combustion engines to reduce fuel consumption and CO2 

emissions, without sacrificing performance. Matching a turbocharger 

to an engine requires a balance of various design variables in order to 

meet the desired performance. Once an initial selection of potential 

compressor and turbine options is made, corresponding performance 

maps are evaluated in 1D engine cycle simulations to down-select the 

best combination. This is the conventional matching procedure used 

in industry and is ‘passive’ since it relies on measured maps, thus 

only existing designs may be evaluated. In other words, turbine 

characteristics cannot be changed during matching so as to explore 

the effect of design adjustments. Instead, this paper presents an 

‘adaptive’ matching methodology for the turbocharger turbine. By 

coupling an engine cycle simulation to a turbine meanline model (‘in-

the-loop’), adjustments in turbine geometry are reflected in both the 

exhaust boundary conditions and overall engine performance. 

Running the coupled engine-turbine model within an optimization 

framework, the optimal turbine design evolves. The methodology is 

applied to a Renault 1.2L turbocharged gasoline engine, to minimize 

fuel consumption over given full- and part-load operating points, 

while meeting performance constraints. Despite the current series 

production turbine being a very good match already, and with 

optimization restricted to a few turbine geometric parameters, the 

full-load case predicted a significant cycle-averaged BSFC reduction 

of 3.5 g/kWh, while the part-load optimized design improved BSFC 

by 0.9 g/kWh. No engine design parameters were changed, so further 

efficiency gains would be possible through simultaneous engine-

turbocharger optimization. The proposed methodology is not only 

useful for improving existing designs; it can also develop a bespoke 

turbine geometry in new engine projects where there is no previously 

available match. For these reasons, ‘adaptive’ turbo matching will 

become the standard approach in the automotive industry. 

Introduction 

Turbocharging the gasoline passenger car engine is now 

commonplace in industry as part of the technology mix alongside 

gasoline direct injection (GDI) and downsizing, in the effort to lower 

fuel consumption and CO2 emissions from personal transportation. 

The process of selecting a turbocharger for a particular customer 

engine application, known as turbocharger matching, is a critical step 

in being able to meet the desired performance characteristics. There 

is typically a trade-off between key end user requirements such as 

fuel economy versus driveability (the latter being a subjective 

combination of high power, fast transient response and especially 

‘good low-end torque’) and this is strongly affected by turbocharger 

choice. The most suitable turbocharger configurations are identified 

by superimposing the target engine operation on characteristic 

compressor and turbine performance maps. The compressor options 

that provide adequate surge and choke margins while achieving high 

efficiency are selected first. Then the turbine options that meet the 

compressor power requirement with high efficiency and low inertia 

are chosen. Once this initial selection of potential compressor and 

turbine options has been made, the corresponding maps are evaluated 

in 1D engine cycle simulations (e.g., GT-POWER) to further down-

select the turbocharger match that is predicted to best meet customer 

requirements. 

This is the typical matching procedure used in the automotive 

industry, which takes place in the beginning of a turbocharger 

project. It may be reviewed and updated as more information 

becomes available (e.g., customer engine test data for model 

validation), but nonetheless sets the initial design direction and thus 

has important consequences for all that follows. The authors describe 

it as a ‘passive’ approach in the sense that it relies on knowing the 

aforementioned maps that have been previously measured on the hot 

gas bench, i.e., only existing turbocharger designs may be evaluated 

against engine project requirements. This means the performance 

characteristics of the selected turbine, for example, cannot be 

changed during the matching simulation in order to explore whether 

small geometrical changes would better match the particular engine 

flow conditions. On the other hand, while 3D CFD can be used to 

optimize a turbine aerodynamic design for given engine flow 

boundary conditions, this approach would not be consistent due to the 

highly-coupled nature of the engine-turbocharger system, i.e., any 

turbine design change would require a new set of boundary 

conditions. What’s required instead is a framework that models both 

engine and turbine with acceptable accuracy and accounts for their 

coupling. This paper presents an ‘active’ or ‘adaptive’ matching 

methodology for the turbocharger turbine. By coupling an engine 

cycle simulation to a meanline model of the turbine’s aerodynamic 

performance (i.e., ‘in-the-loop’), the effect of turbine geometry 

changes will be reflected in the exhaust boundary conditions, as well 

as the overall engine performance prediction. Then, by running this 

coupled engine-turbine model within an optimization framework, the 

optimal turbine design will evolve.  

A meanline model is a quasi-1D approach to predict the aerodynamic 

performance of, in this case, a radial turbine, using limited geometric 

parameters. It assumes there is a mean streamline through the turbine 

stage along which a number of calculation stations may be identified 

and which are representative of average flow conditions. This permits 

straightforward thermodynamic calculations of turbine performance 

using a minimum of geometric data. The main limitation, however, is 

the reliance on empirical loss correlations, which are necessary to 

estimate  the magnitude of various sources of pressure loss and flow 

blockage [1]. Much of the classical work involving meanline 
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modeling was performed at NASA [2,3], establishing the basic set of 

loss models to predict radial turbine performance. Baines [4] 

developed a meanline loss modeling system capable of predicting 

both the on- and off-design performance of radial turbines, as a 

refinement of the NASA approach. Qiu and Baines [1] extended the 

meanline calculation method into the high pressure ratio region of the 

turbine map and provided a method to obtain consistent predictions 

under subsonic, transonic or supersonic flow conditions. Abidat [5] 

used a meanline model to predict radial turbine performance in steady 

and pulsating flow conditions. Romagnoli and Martinez-Botas [6] 

developed a meanline model to predict performance of nozzled and 

nozzleless mixed flow turbines and validated their predictions against 

experimental data. Sakellaridis and Hountalas [7] developed a 

meanline model for simulation of turbochargers to support diagnostic 

investigations in diesel engines. 

Following description of the methodology, the paper applies the 

proposed coupled engine-turbine optimization framework to a 

Renault 1.2L turbocharged gasoline passenger car engine. Having 

been developed over a number of generations, the current series 

production turbine supplied for this engine is already a very good 

match. Nonetheless, the turbine aerodynamic design is optimized 

over a number of steady-state engine operating points under both full- 

and part-load conditions while meeting certain constraints, starting 

with the current production geometry as the baseline. The 

corresponding engine model has been previously validated against 

measured engine dynamometer data, whilst the turbine meanline 

model is also shown to correctly predict performance of the baseline 

production turbine when compared against flow bench data. 

Turbine Meanline Methodology 

The meanline model in this work is based on the quasi-one 

dimensional procedure initially used by the authors in Ref. [8], which  

determines the flow state at (in this case) three different stations 

through the nozzleless radial turbine stage: 1) volute, 2) rotor inlet, 

and 3) rotor outlet, as shown in Figure 1. (N.B. a stage employing 

nozzles will require more stations [6].)  

The meanline model accounts for energy dissipation along the flow 

path through the turbine stage by deploying a set of empirical 

correlations (or loss models) that describe loss generation. A common 

feature of most loss modeling systems is a conceptual division of the 

overall loss into separate components, corresponding to different 

physical loss mechanisms [4]. The first classification distinguishes 

volute and rotor losses – which are described next. 

Volute loss modelling 

As per Ref. [6], two major volute loss mechanisms are considered, 

embodied in the swirl and pressure loss coefficients. These account 

for irreversibilities due to mixing, secondary flow and recirculation. 

 

Figure 1. Stations for turbine meanline model calculation. 

Swirl loss coefficient (𝑺)  

In an ideal volute, angular momentum of is conserved. In reality, 

some is lost due to wall friction between the flow and volute [9]. To 

account for this, the swirl loss coefficient 𝑆 is introduced to the 

conservation of angular momentum in Equation 1, where 𝐶 is the 

absolute velocity, 𝐶θ the tangential velocity, and 𝑟 the radius. Typical 

values range between 0.85–0.95 [10]. 

𝐶1𝑟1 𝑆 =  𝐶θ2𝑟2     (1) 

Pressure loss (𝑲𝐏) 

The pressure loss coefficient, 𝐾P (Equation 2), models the pressure 

(𝑃) losses due to volute wall friction [11]; typical values lie in the 

range 0.1–0.3 [10]. 

  

𝐾P =
𝑃01−𝑃02

𝑃02−𝑃2
                               (2) 

Rotor loss modeling 

Energy losses in the rotor are modeled according to the NASA 

approach [2,3], which attributes losses due to incidence effects, 

friction in the flow passage, clearance between rotor and shroud, and 

disk friction on the wheel. 

Incidence loss (Li) 

Ideal flow conditions at rotor inlet do not actually correspond to 

perfect alignment between the flow and the blade. This phenomenon 

has been demonstrated experimentally by Yeo and Baines [12] and is 

due to the pressure difference between the blades’ pressure and 

suction surfaces. In a radial turbine, this results in an optimum 

relative inlet flow angle, 𝛽2,opt, of somewhere between -20 to -30 

[10]. The incidence angle, 𝑖2, is defined in the meanline model as the 

difference between the actual and optimum relative inlet flow angles 

(Equation 3), i.e., the ideal situation is when 𝑖2 = 0. (N.B. other 

works refer the incidence angle to the blade angle; both definitions 

are in general use and so care must be taken to be consistent.) 
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𝑖2 = 𝛽2 − 𝛽2,opt    (3) 

As the relative inlet flow angle departs from the optimum (i.e., 𝑖2 

becomes non-zero), flow separation becomes more likely and mixing 

losses in the rotor increase [11]. The enthalpy loss due to incidence, 

𝐿i (Equation 4), is modeled assuming that the change in relative 

tangential kinetic energy manifests as an increase in internal energy 

of the gas (and a consequent increase in entropy). Here 𝐾i is the 

incidence loss coefficient and 𝑊2 is the relative inlet velocity. 

 

𝐿i =  0.5  𝐾i  𝑊2
2  sin2 𝑖2              (4)    

Clearance loss (𝑳𝐜) 

There must exist a clearance between the blade tip and the shroud, 

the latter provided by the inside of the turbine housing (in a typical 

turbocharger). The pressure difference between the pressure and 

suction blade surfaces drives a tip clearance flow through this gap, 

resulting in an enthalpy loss. This clearance loss, 𝐿c, is based on that 

in Ref. [4], shown here in Equation 5 

𝐿c =  
𝑈2

3  𝑁

8𝜋
(𝐾a𝑒a𝐶a +  𝐾r𝑒r𝐶r + 𝐾ar√𝑒a𝐶a𝑒r𝐶r)            (5) 

where  

 𝑈2 is the inlet blade speed; 

 𝑁 is the blade number; 

 𝐾a and 𝐾r are resp. axial and radial clearance loss coefficients; 

 𝑒a and 𝑒r are axial and radial tip clearances, resp.; 

 𝐾ar is the cross-coupling coefficient; and 

where the axial and radial absolute velocities, resp. 𝐶aand 𝐶r, are 

  𝐶a =  
1−(

𝑟3,tip

𝑟2
)

𝐶r,2 𝑏2
        (6) 

and 

𝐶r = (
𝑟3,tip

𝑟2
) 

𝑧−𝑏2

𝐶a,3 𝑟3 𝑏3
       (7) 

Passage loss (Lp)  

Passage loss accounts for pipe friction and blade loading losses in the 

blade passage. The meanline model uses the treatment from Ref. 

[10], described here in Equation 8, where 𝐾p is the passage loss 

coefficient and 𝑊3 is the relative outlet velocity. 

𝐿p =  0.5  𝐾p (𝑊2
2 cos2 𝑖2 + 𝑊3

2)  (8) 

Disk friction loss (Ldf) 

The disk friction or windage loss, 𝐿df, accounts for friction on the 

backface of the turbine wheel. The meanline model employs the 

expression in Ref. [3], shown here in Equation 9, where 𝜌2 is the 

rotor inlet gas density, �̇� its mass flow rate, and 𝜇 its dynamic 

viscosity.  

𝐿df =
0.02125  𝑈2

3 𝜌2
2

�̇�(
𝜌2 𝑈2 𝑟2

𝜇
)

0.2           (9) 

The meanline model has been programmed in FORTRAN, and 

requires the turbine rotational speed, total inlet conditions, static 

outlet pressure, the thermodynamic properties of the working 

medium, and the basic turbine geometric parameters as inputs. The 

model returns the mass flow rate and total-to-static efficiency as 

outputs.  

Turbine Meanline Model Validation 

Experimental validation 

As a validation exercise, the meanline model was used to predict the 

performance of an off-the-shelf, ~36mm diameter radial turbine for a 

mass-produced passenger car engine turbocharger, manufactured by 

Mitsubishi Turbocharger and Engine Europe BV (MTEE). First of 

all, the model is calibrated against a single speed line from the 

measured turbine map, using a genetic algorithm (GA) to obtain the 

coefficients for the different loss mechanisms, with the objective of 

minimizing the sum of squares between the model prediction and 

experimental data. Once calibration was attained for this single speed 

line, the model was exercised to predict turbine performance for the 

remaining four speed lines in the measured map. Figure 2 compares 

the measured and predicted swallowing capacity, while Figure 3 

compares the efficiency, for the five speed lines. Here, rotational 

speed has been normalized against the maximum measured speed; the 

speed line used for calibration is labelled ‘100% Speed’. 

 

Figure 2. Comparison of measured and predicted turbine swallowing capacity. 

 

Figure 3. Comparison of measured and predicted turbine efficiency. 
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It can be seen that the calibrated model predicts the turbine behavior 

very well both in terms of mass flow and efficiency within the 

measured data range. However, since the model predicts turbine 

performance over a considerably wider range of pressure ratio 

compared to that available from gas stand measurements, it does 

mean the meanline model cannot be validated against experimental 

data in these regions – this issue will be addressed in the next section.  

When employing the turbocharger compressor as the loading device 

during map measurement, the measured turbine speed lines will be 

quite limited in width due to compressor surge and choke. This width 

does not sufficiently cover the range of turbine operation on-engine, 

and so when used in 1D engine cycle simulations, such measured 

maps must be extrapolated, using a mathematical or physics-based 

technique, or a combination thereof. Nevertheless, that approach will 

likely have a weaker physical basis than using the meanline model 

presented here, resulting in poorer turbine performance prediction 

when the engine operates away from the measured map. 

CFD validation 

To ascertain the predictive accuracy of the meanline model outside of 

the map measured map range, a 3D CFD analysis of the same subject 

turbine was performed. The meanline model predictions were 

compared against corresponding predictions obtained from CFD.  

CFD setup and pre-processing 

The 3D geometry of the turbine volute and rotor was provided by 

MTEE for the CFD analysis. A preliminary step was to obtain a clean 

geometry prior to meshing, i.e., removal of feature details that are 

irrelevant for CFD analysis and which would potentially impose 

unnecessarily high local mesh resolution. Altair HyperMesh was then 

used to mesh the entire fluid domain: turbine volute, rotor, plus inlet 

and outlet extrusions, as shown in Figure 4. 

 

Figure 4. Turbine stage CFD domain and boundary conditions. 

An unstructured mesh (Figure 5) was created for all components, 

with 10 elements in the near wall boundary layer mesh. An average 

y+ value of 5 was achieved. The grid consisted of 2.1 million 

elements in the volute and 3.2 million elements in the rotor. 3D 

RANS steady-state simulations were carried out using the ANSYS 

CFX 18.1 finite volume solver. The two-equation 𝑘-𝜔 SST 

turbulence model was selected; this combines the robust formulation 

of the 𝑘-𝜔 model in the near wall region with the far stream 

independence of the 𝑘-𝜀 model [13]. It provides more accurate 

predictions when there is flow separation under adverse pressure 

gradients and in cases of wall bounded flows [14]. 

 

Figure 5. Computational mesh of turbine volute and rotor. 

A total pressure of 150 kPa and total temperature of 373.15K were 

applied as the inlet boundary conditions at the plane identified in 

Figure 4, together with a medium turbulent intensity of 5%, for all 

simulations. Total-to-static efficiency and mass flow rate were 

monitored to track convergence, with a convergence criterion of 

1x10-5 used for all residuals. Static pressure was specified as the 

outlet boundary condition, and was varied to obtain different 

operating conditions. The rotor shroud was defined as a counter 

rotating wall to simulate the relative motion between the turbine rotor 

and volute. As shown in Figure 4, frozen rotor interfaces were 

specified between the stationary volute and rotor, and between the 

rotor and outlet duct. All walls were defined as adiabatic. 

Comparison of CFD and meanline predictions 

Figure 6 compares the predictive capability of the meanline model 

against the CFD simulations, for three speed lines. 

 

 
Figure 6. Comparison of 3D CFD and meanline model predictions. 
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The meanline model swallowing capacity and efficiency predictions 

agree well with CFD (within ± 3%-age points), with trends captured 

for all three speed lines (not only at the 100% speed used for 

calibration), even at very low and high pressure ratios (where test 

data isn’t available). Combined with the earlier experimental 

validation, this gives confidence that the meanline model will provide 

accurate turbine performance prediction across the full operating 

range experienced in 1D engine simulations. 

Engine Model Validation 

A Renault 1.2L turbocharged GDI engine (Table 1) was used as the 

subject engine in this study. The engine air system employs a fixed 

geometry, wastegated turbocharger supplied by MTEE. The 

wastegate is used to control the delivered boost pressure by 

increasing the effective exhaust flow area, bypassing some exhaust 

gas around the turbine, restricting the developed turbine power. 

Table 1. Renault 1.2L turbocharged GDI engine specifications. 

Capacity (cc) 1198 
Combustion 

system 
4-stroke GDI 

No. of cylinders 4 

Bore x stroke (mm) 72.2 x 73.1 

Air system 

Single, fixed 

geometry, wastegated 

turbocharger Compression ratio 10:1 

 

A GT-POWER 1D engine cycle simulation model was supplied by 

the engine manufacturer for this study. Measured compressor and 

turbine performance maps, provided by MTEE, were used for 

modeling the turbocharger at this stage. The engine model targets the 

desired torque at each speed using the in-built wastegate controller. 

Validation was carried out for 14 full-load steady-state operating 

points (Table 2) against engine dynamometer test data.  

Table 2. Full-load engine operating points. 

Engine speed 

(rpm) 

Normalized target 

engine torque 

Engine speed 

(rpm) 

Normalized target 

engine torque 

1000 0.65 3000 1.00 

1250 0.83 3500 1.00 

1500 1.00 4000 1.00 

1750 1.00 4500 0.95 

2000 1.00 5000 0.85 

2250 1.00 5500 0.78 

2500 1.00 6000 0.71 

 

All results in the paper have been normalized by the maximum value 

of the corresponding parameter. Figure 7 presents the comparison of 

simulated engine performance against the engine test data. It can be 

seen in Figure 7 (a) that the engine model predicts brake power well 

across the speed range; however, when translated into brake torque 

any small differences, particularly at low engine speeds, are 

amplified. Indeed, Figure 7 (b) shows that the model over predicts the 

torque at the third and fourth engine speeds. Similarly, Figure 7 (c) 

shows the trend of brake specific fuel consumption (BSFC), which is 

the preferred indicator of overall system efficiency in this paper, is 

well-captured except at the lowest engine speeds. 

 

 
Figure 7. Comparison of measured and simulated engine performance. 

 

Figure 8. Comparison of measured and simulated turbocharger performance. 

Figure 8 compares the predicted cycle-averaged turbocharger 

performance against test data. In Figure 8 (a), the engine model 

predicts turbocharger speed reasonably well over the entire measured 

range, again except for engine speeds between 1500–2000 rpm. 

However, in Figure 8 (b), the compressor pressure ratio (thus boost) 
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is well-predicted only for the mid-speed range (2000–4500 rpm). At 

high engine speeds (5000–6000 rpm), the model predicts too high a 

boost, in order to meet the required engine torque. Despite the 

deviations between simulated and measured engine performance 

(mainly at low and high engine speeds), cycle-averaged predictions 

can be used to evaluate relative engine performance. 

Turbine Modeling: Map versus Meanline 

As mentioned, 1D engine cycle simulation tools conventionally use 

experimentally-measured turbine and compressor maps in order to 

simulate turbocharger performance. Due to measured width 

limitations, turbine maps especially must usually be extrapolated 

before they can be used in such simulations, thereby introducing a 

certain amount of prediction inaccuracy [7], especially when 

operating far outside the measured range [15]. The long-term 

objective of this work is to reduce this modeling uncertainty and 

reliance on the measured turbocharger turbine maps for engine 

simulations. Thus the radial turbine meanline model was integrated 

with the engine model to predict turbine behavior, supplanting the 

turbine map component. (Compressor performance prediction suffers 

less from extrapolation, and continued to be modeled using maps.) In 

an engine simulation, the instantaneous turbocharger rotational speed 

is known, while turbine expansion ratio and thermodynamic fluid 

properties are defined by the instantaneous pressure and temperature 

conditions in adjoining ducts. At every time step, these are provided 

as boundary conditions to the meanline model, which in turn supplies 

its prediction of instantaneous turbine mass flow and efficiency.  

To assess how the choice of map-based or meanline-based turbine 

modeling affects performance prediction, 1D engine simulations were 

performed for both approaches, for the 14 full-load engine operating 

points in Table 2, and 8 additional part-load points listed in Table 3. 

Table 3. Part-load engine operating points. 

Engine speed 

(rpm) 

Normalized target 

engine torque 

Engine speed 

(rpm) 

Normalized target 

engine torque 

1500 0.85 2500 0.80 

1500 0.75 2500 0.85 

2000 0.85 3000 0.75 

2000 0.75 3500 0.60 

 

Figure 9 compares the engine model full-load predictions using the 

two turbine simulation methods: map-based and meanline model. It 

can be seen in Figure 9 (a) and Figure 9 (b) that the meanline model-

based simulation predicts the same engine torque and power as the 

map-based simulation. The BSFC predictions in Figure 9 (c) match 

well between methods at low and mid-engine speeds, however at the 

highest engine speed the meanline model-based simulation shows a 

1.2% lower BSFC than the map-based prediction. This can be 

explained by looking at the PMEP predictions for the two cases in 

Figure 9 (d), where the turbine meanline model results in improved 

(less negative) pumping work and hence lower BSFC. Turbocharger 

speed and compressor operation were identical between methods. 

 

 
Figure 9. Map vs meanline turbine models: full-load engine performance. 
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Figure 10. Map vs meanline turbine models: turbine operation at full load. 

Figure 10 continues the comparison of map- and meanline-based 

turbine modeling options, at the turbine level. Both estimate very 

similar turbine mass flow rate and blade speed ratio (BSR), in Figure 

10 (a) and Figure 10 (d) resp., at all engine speeds. Pressure ratio and 

efficiency are also similarly predicted except at the highest engine 

speeds where there is a ~2.5% difference. This is likely due to the 

extrapolation required in this operating region. 

 

 
Figure 11. Map vs meanline turbine models: part-load engine performance. 

Next, predictions at the part-load engine operating points in Table 3 

are compared. Figure 11 shows both methods again predict similar 

engine performance, in terms of brake power, torque and BSFC. It 

can be seen from Figure 12 (a) and Figure 12 (c) that the meanline 

model-based simulation predicts slightly higher mass flow through 

the turbine and lower efficiency at the same engine speed, compared 

to the map-based approach. Since these parameters have an opposite 

effect on pumping work, they balance each other out, and so the 

predicted BSFC remains similar (Figure 11 (c)). The deviation in 

mass flow and efficiency predictions may again be attributed to 

extrapolation effects in the map-based approach. 
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Figure 12. Map vs meanline turbine models: turbine operation at part load. 

Turbine Optimization to Reduce System BSFC  

The coupled engine-turbine meanline model permits 1D turbocharged 

engine simulations without recourse to measured turbine maps, 

instead relying on a description of the turbine geometry (plus, of 

course, calibrated loss correlations). And since the geometry may be 

adjusted during simulation, it becomes a suitable platform for 

performing aerodynamic optimization. A genetic algorithm [16] was 

selected for this purpose, a type of evolutionary algorithm [17] 

inspired by biological processes (e.g., mutation, crossover, natural 

selection), variously applied in turbomachinery design to iteratively 

improve a set of solution candidates [e.g., 18, 19].  

In this work, the GA optimizer available in the 1D engine cycle 

simulation software GT-POWER was used. Figure 13 shows the 

basic turbine geometric parameters. Table 4 lists the parameters to be 

varied by the optimizer – a maximum perturbation of ±8% to the 

nominal values was allowed (to limit the change in turbine wheel 

inertia). A population size of 30 was specified, which is more than 

twice the number of design variables, as recommended by Ref. [18]. 

A crossover rate of 1, a crossover rate distribution index of 15, and a 

mutation rate of 0.14 were specified to create diversity in the 

population. The scope of optimization was purposely limited to the 

turbine, i.e., no compressor or engine model parameters were 

changed. The objective was to minimize overall system BSFC over a 

set of (1) full- and (2) part-load steady-state engine operating points. 

 
Figure 13. Basic turbine geometric parameters. 

Table 4. Turbine geometric parameters varied by the optimizer. 

Parameter Description 

𝐴1 Volute inlet area 

𝑟1 Volute inlet radius 

𝐵2 Rotor inducer height 

𝑟2 Rotor inlet radius 

𝑧 Blade length 

𝑟3,tip Rotor outlet tip radius 

𝛽3b Rotor outlet blade angle 

 

Case 1: Full-load turbine design optimization 

This case considered an imagined steady-state drive cycle, 

comprising a sub-set of 6 full-load engine operating points (Table 5), 

over which turbine aerodynamic optimization was performed. Here, 

these were given equal importance, but it is straightforward to assign 

weightings to distinguish different drive cycles. 

Table 5. Full-load engine operating points for turbine optimization (Case 1). 

Engine speed 

(rpm) 

Normalized target 

engine torque 

Engine speed 

(rpm) 

Normalized target 

engine torque 

1250 0.83 3500 1.00 

1500 1.00 4500 0.95 

2250 1.00 6000 0.71 
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Figure 14. Optimization convergence at full load (Case 1). 

Figure 14 shows the convergence plot for the optimization process, 

which is halted once the change in objective function (i.e., BSFC) is 

less than < 0.05 g/kWh. In Case 1, after ~300 iterations (~6 days on a 

workstation using two cores of an i7-2600 processor, clock speed 3.4 

GHz), the optimizer achieved an improvement in the cycle-averaged 

BSFC of ~3.5 g/kWh, a significant reduction. 

Investigating further, Table 6 presents the relative change in the 

optimized design parameters compared to the baseline design. It can 

be seen that Case 1 optimization resulted in an increase in the volute 

inlet area 𝐴1, the rotor inducer height 𝐵2, the rotor inlet radius 𝑟2, and 

the rotor outlet tip radius 𝑟3,tip, but a decrease in the volute inlet 

radius 𝑟1, the rotor outlet blade angle 𝛽3b, and the blade length 𝑧. 

Table 6. Relative change in design parameters optimized at full load (Case 1). 

Parameter Description Change relative to baseline (%) 

𝐴1 Volute inlet area 7.12 

𝑟1 Volute inlet radius -6.18 

𝐵2 Rotor inducer height 4.04 

𝑟2 Rotor inlet radius 7.38 

𝑧 Blade length -2.44 

𝑟3,tip Rotor outlet tip radius 6.73 

𝛽3b Rotor outlet blade angle -6.71 

 

 
Figure 15. Influence of turbine geometric parameters on engine BSFC at 

different full-load engine speeds (Case 1). 

Next, optimization data was used to explore the influence of 

individual turbine geometric parameters on engine BSFC, shown in 

Figure 15, where the shaded bars represent different engine speeds. 

Sensitivity is computed by a linear least squares approach using all 

iteration data. The slopes determined by least squares fitting are 

normalized by the sum of all slopes [20]. 

Straightaway it may be inferred that, in this case, blade length 𝑧 has 

little influence on BSFC, while the rotor outlet radius 𝑟3,tip shows the 

greatest influence, irrespective of engine speed. This can be related to 

the variation of turbine throat area with rotor outlet radius, which 

dictates swallowing capacity. The rotor inlet radius 𝑟2 also has a 

significant impact on engine BSFC. The rotor outlet blade angle 𝛽3b 

is the next most important design parameter. The volute parameters 

𝐴1 and 𝑟1 also influence BSFC as they determine the turbine ‘A/R’, a 

parameter used in the industry to denote relative turbine housing size. 

For example, a smaller A/R will tend to raise exhaust back pressure, 

consequently increasing pumping work and overall BSFC. Finally, 

while there is some variance in sensitivity to the same parameter 

between engine speeds, this is much smaller than sensitivity 

differences between parameters. Although brief, this analysis helps 

identify influential turbine design parameters, translating adjustments 

at the turbine component level to overall engine system level BSFC. 

 

 
Figure 16. Comparison of full-load engine performance for baseline and 

optimized turbine designs (Case 1). 
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Figure 17. Comparison of turbine performance at full-load for baseline and 

optimized turbine designs (Case 1). 

Figure 16 compares predicted engine performance for the baseline 

and optimized turbine designs. Figure 16 (a) and Figure 16 (b) simply 

confirm that the optimized design meets the torque and power targets. 

Figure 16 (c) shows the magnitude of BSFC reduction is larger at 

higher engine speeds, but there is an improvement at all speeds. This 

stems from improved (less negative) pumping work, as seen in Figure 

16 (d), which can itself be explained by comparing the turbine 

operation in Figure 17.  

Figure 17 (a) and Figure 17 (c) indicate that design optimization 

resulted in a turbine with improved flow capacity and efficiency at all 

engine operating points, while imposing a lower expansion ratio 

(Figure 17 (b)). This reduces exhaust back pressure and hence 

pumping work, reflected in improved BSFC. At the turbine stage 

level, improved efficiency may be attributed to the optimized design 

operating closer to the optimum BSR of ~0.7 for an ideal radial 

turbine [10], at least at the three highest engine speeds. Indeed, 

Figure 17 (d) shows that the optimized design operates at a slightly 

higher BSR at all engine speeds. Compressor operation for both 

designs remained the same; this is to be expected since the same 

compressor map is used, and, ignoring any slight differences in 

cylinder scavenging, the same nominal boost level will be required to 

meet the target torque. It follows then that, as shown in Figure 17 (e), 

turbocharger rotational speed remains almost identical for the two 

designs. Figure 17 (f) shows wastegate mass flow rate reduces 

compared to the baseline design, in order for the turbine to meet the 

power demanded by the compressor for the required boost pressure. 

So, despite the current series production turbine already being a good 

match, and with optimization restricted to a handful of parameters, 

simulation results suggest there remains a worthwhile margin of 3.5 

g/kWh for system efficiency gains at full load. 

Case 2: Part-load turbine design optimization 

Table 7 lists the 5 part-load engine operating points for which the 

second optimization case was performed. Again, each point was 

assigned equal importance in the absence of detailed drive cycle data. 

Table 7. Part-load engine operating points for turbine optimization (Case 2). 

Engine speed 

(rpm) 

Normalized target 

engine torque 

Engine speed 

(rpm) 

Normalized target 

engine torque 

2000 0.75 3000 0.75 

2250 0.75 3500 0.60 

2500 0.80   

 

 
Figure 18. Optimization convergence at part load (Case 2). 
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The same GA configuration and parameter list as described for full-

load optimization was again used, with convergence achieved after 

~350 iterations (Figure 18). Table 8 shows the relative change in the 

design parameters as a result of optimization at part load, resulting in 

an increase in the volute area 𝐴1, the rotor inlet radius 𝑟2, and the 

rotor outlet tip radius 𝑟3,tip. A decrease is seen in the volute inlet 

radius 𝑟1, the rotor inducer height 𝐵2, the rotor outlet blade angle 𝛽3b, 

and the blade length 𝑧. The direction of these changes is the same as 

for the full-load case (except for rotor inducer height 𝐵2, which 

increased by ~4% under optimization at full load). Nonetheless the 

small changes in magnitude go to show that the optimal turbine 

design does differ slightly between full- and part-load operation. 

Table 8. Relative change in design parameters optimized at part load (Case 2) 

compared to those at full load (Case 1). 

Parameter 

Change relative to baseline (%) 

Full load (Case 1) for comparison Part load (Case 2) 

𝐴1 7.12 7.66 

𝑟1 -6.18 -5.30 

𝐵2 4.04 -0.17 

𝑟2 7.38 7.08 

𝑧 -2.44 -3.77 

𝑟3,tip 6.73 7.32 

𝛽3b -6.71 -5.82 

 

Figure 19 presents the sensitivity of BSFC to each design parameter, 

for the part-load optimization. Compared with Case 1 (full load), now 

both the rotor outlet blade angle 𝛽3b  and the rotor outlet tip radius 

𝑟3,tip show considerable influence on engine BSFC, at all engine 

speeds. Part-load BSFC is also sensitive to volute inlet area and 

radius.  Rotor inducer height has a small influence on BSFC, as for 

the full-load case. Lastly, the blade length 𝑧 continues to play a very 

minor role in determining engine BSFC. 

 

Figure 19. Influence of turbine geometric parameters on engine BSFC at 

different part-load engine speeds (Case 2). 

Figure 20 compares predicted engine performance for the baseline 

and part-load optimized turbines. Figure 20 (a) and Figure 20 (b) 

again confirm that the optimized design meets the desired part-load 

torque and power. In Figure 20 (c), the optimized design improves 

the BSFC at all points, resulting in a slightly better cycle-averaged 

fuel consumption of 0.9 g/kWh overall. Again there appears to be 

some room to improve part-load engine efficiency through turbine 

optimization, albeit to a lesser extent that at full load. 

 
Figure 20. Comparison of part-load engine performance for baseline and 

optimized turbine designs (Case 2). 

Figure 21 compares optimized and baseline turbine performance at 

part load. As for full load, both mass flow and efficiency increase 

(Figure 21 (a) & (c) resp.), while expansion ratio (Figure 21 (b)) 

decreases for the optimized design. Optimization again results in a 

design that operates at higher BSR (Figure 21 (d)), turbocharger 

rotational speed (Figure 21 (e)) remains constant, and wastegate flow 

(Figure 21 (f)) reduces to match the required compressor power. 

Conclusions 

This paper presents an ‘adaptive’ turbine matching methodology that 

couples a turbine meanline model to a 1D engine model. The turbine 

meanline model is based on existing loss correlations in the literature, 

and is first calibrated against a single speed line from a measured 

turbine map. Using the baseline series production turbine, validation 
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of the meanline model against both experimental data and CFD 

provides confidence that the meanline model accurately predicts 

turbine performance across the full on-engine operation range. 

 

 
Figure 21. Comparison of turbine performance at part load for baseline and 

optimized turbine designs (Case 2). 

The meanline model was coupled to an engine model for a Renault 

1.2L turbocharged GDI passenger car engine, which was generally a 

good match to the engine dynamometer test data. Validation of the 

coupled engine-turbine model results in the same engine performance 

given the same baseline turbine design. A comparison of engine 

performance predictions using both map-based and meanline turbine 

models highlighted some differences, particularly in regions expected 

to suffer from turbine map extrapolation. 

The main objective of the current paper is to demonstrate the use of a 

meanline model to optimize turbine design, in a scenario where the 

objective is to minimize fuel consumption over a given set of engine 

operating points. Two cases were considered: full- and part load, with 

all points given equal importance in each. In the full-load case, the 

GA-optimized turbine geometry predicted a significant reduction in 

cycle-averaged BSFC of 3.5 g/kWh. However, it should be noted that 

real passenger car drive cycles spend the clear majority of the time 

under part load conditions. In this case, the part-load optimized 

design showed just a 0.9 g/kWh cycle-averaged BSFC improvement 

– this is nonetheless worth having. Though it must also be noted that 

this was achieved with optimization restricted to a handful of turbine 

geometric parameters, and without any modification to the engine 

design or breathing and combustion control parameters (e.g., valve 

timing and spark advance). This suggests greater efficiency gains 

may be possible if engine and turbocharger optimization is performed 

simultaneously. Overall then, there appears to be attainable system-

level efficiency benefits through turbine aerodynamic optimization. 

The paper also briefly examined the influence of turbine design 

parameters on engine BSFC, using the data generated by the 

optimization process. This highlighted that, for the turbine design 

parameters under investigation: 

 The most influential were the rotor outlet tip radius 𝑟3,tip at full 

load, and the rotor outlet blade angle 𝛽3b (closely followed by 

𝑟3,tip) at part load; 

 The least influential was the blade length 𝑧 in either case; and 

 There is a noticeable but less critical variation in the influence of 

each parameter across different engine speeds. 

In sum, the benefits of ‘adaptive’ turbine matching by employing a 

coupled engine-turbine meanline model are that: 

 It removes reliance on measured turbine maps (and the associated 

poor predictive accuracy incurred by map extrapolation); 

 It enables aerodynamic optimization of an existing turbine 

geometry, or development of a bespoke turbine geometry in new 

engine projects where there is no previously available match, for 

given engine-level customer objective(s), e.g., BSFC; and 

 It permits sensitivity of engine-level performance (including 

BSFC) to component-level design parameters (the turbine, in this 

case) to be studied. 

The cost of these benefits is the not insignificant computational time 

required for an optimized turbine design to evolve. However, this 

must be weighed against the total time taken by the standard 

matching approach in which any number of turbine maps may need 

to be evaluated before the most suitable (though non-optimal) turbine 

design reveals itself. Based on their experience, the authors suggest 

that an ‘adaptive’ turbine matching process will in reality take no 

longer, yet will likely result in better designs. For these reasons, it is 
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expected that some form of adaptive turbocharger matching will 

eventually become the standard approach. 

Future work 

The following items remain to be addressed: 

 The current geometry optimization process is constrained to 

generate purely radial designs. This will be relaxed in future work 

to allow mixed flow designs to be evolved, in order to explore 

further efficiency improvements that are potentially on offer. 

 The current work used an imagined set of full- and part-load 

engine operating points, and considered them separately, 

resulting in slightly different designs. This goes to show that the 

optimal turbine design differs between full- and part-load 

operation, and in general between any non-identical set of engine 

operating points. Hence future work will move towards turbine 

optimization over more realistic drive cycles, which will 

inherently comprise a mixture of full- and part- load operation. 

 In the current work, optimization relies on the accuracy of the 

meanline model. While it has been validated against both test 

data and CFD for an existing design, future work must consider 

the corresponding optimized 3D geometry and its simulation in 

3D CFD, alongside experimental testing, to fully validate the 

meanline optimization process.  

 So far optimization has been aerodynamic-only; no inertia or 

structural constraints are currently imposed. Future work must 

consider implications of design changes on turbine inertia, since 

this affects engine transient response (a critical customer 

requirement), and blade shape optimization must accommodate 

mechanical stress constraints, if the methodology is to be 

commercially useful. 

 As mentioned, no engine design parameters have so far been 

adjusted, but this could reveal further efficiency gains. This will 

require closer collaboration with the engine manufacturer to 

perform simultaneous engine and turbocharger optimization. 
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Definitions/Abbreviations 

Roman symbols 

B blade height 

C absolute velocity 

e tip clearance 

i incidence 

K calibration coefficient 

L enthalpy loss 

N blade number 

P pressure 

r radius 

S swirl loss coefficient 

U blade speed 

W relative velocity 

z blade length 

Greek symbols 

𝛽 relative flow angle 

𝜇 dynamic viscosity 

𝜌 density 

Subscripts 

0 total condition 

1 volute inlet 

2 rotor inlet 

3 rotor outlet 

a axial 

b blade 

c clearance 

df disk friction 

i incidence 

max maximum 

min minimum 

opt optimal 

p passage 

r radial 

tip blade tip 

𝜃 tangential 

Abbreviations 

BMEP Brake Mean Effective Pressure 

BSFC Brake Specific Fuel Consumption 

BSR Blade:Speed Ratio 

CFD Computational Fluid Dynamics 

GA Genetic Algorithm 

GDI Gasoline Direct Injection 

MTEE Mitsubishi Turbocharger and Engine Europe BV 

RANS Reynolds-averaged Navier-Stokes 

PMEP Pumping Mean Effective Pressure 
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